logo with color

研究成果

Life cycle assessment of continuous pad dyeing technology for cotton fabrics

2015-10-13
论文链接

Abstract

Purpose China is the largest producer of textile-dyeing products in the world. The production of these materials consumes high amounts of water and energy and results in the discharge of huge amounts of pollutants. This study aimed at evaluating the life-cycle environmental impacts of the textile-dyeing industry and determining the key processes for mitigating life-cycle environmental impacts efficiently and effectively, which will benefit the application of cleaner production technologies. Methods A life-cycle assessment was performed according to the ISO 14040 standard series. The system investigated includes the dyeing process and final disposal and the transportation of raw material, energy production, and transportation. The functional unit is 10,000 m of cotton fabric, which weighs 2,000 kg. Our study encompasses three types of data. The data regarding the production process and the major raw materials, necessary energy, and the source of the energy, as well as the emissions of some pollutants, were provided by a textile-dyeing enterprise in Jiangsu Province. The data regarding transport were generated using the GaBi version 4.3 database. Some emission factor data such as those on CO2, CH4, and N2O emissions were obtained from the literature. Resources, energy consumption, and emissions are quantified, and some of the potential environmental effects were evaluated using the CML2001 method built into the GaBi version 4.3 database. Results and discussion Scouring and oxygen bleaching, dyeing, stentering and setting, wastewater treatment, and incineration are the key processes in terms of global warming potential, acidification potential, photochemical ozone creation potential, and eutrophication potential. It will therefore be useful to enhance the recycling of water, control the consumption of additives and dyes, and conserve energy as much as possible. Through scenario analysis, we note that motorized shipment should be used instead of shipment by trucks, when conditions permit. Conclusions To promote energy conservation and the clean production of continuous pad-dyeing technology for cotton fabrics, other environmental impact categories besides the impact of the water system should be given focus. Additional work can be performed on the following: considering a consumption-based perspective of the entire process, uncertainty in data on life-cycle inventory, the evaluation methodology employed, temporal and spatial variation, the normalized toxicity of dyes and additives, and weighting methods.